Register event
51 events found
  • Getting Started with NVivo for Mac at ACU

    18 June 2024

    Getting Started with NVivo for Mac at ACU https://staging.dresa.org.au/events/getting-started-with-nvivo-for-mac-at-acu Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 14 Pro for Mac and is not suitable for NVivo for Windows users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo102).** 2024-06-18 09:30:00 UTC 2024-06-18 12:30:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Getting Started with NVivo for Mac at UNSW Online

    18 June 2024

    Getting Started with NVivo for Mac at UNSW Online https://staging.dresa.org.au/events/getting-started-with-nvivo-for-mac-at-unsw-online Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 14 Pro for Mac and is not suitable for NVivo for Windows users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo102).** 2024-06-18 09:30:00 UTC 2024-06-18 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at Deakin Online

    25 - 26 June 2024

    Introduction to Machine Learning using Python: Classification at Deakin Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-deakin-online-fd3303fb-988e-49f8-9a94-bbc65aaccce0 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2024-06-25 09:30:00 UTC 2024-06-26 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: Python at UNSW Online

    25 - 26 June 2024

    Learn to Program: Python at UNSW Online https://staging.dresa.org.au/events/learn-to-program-python-at-unsw-online-ff4afa74-2894-41e1-ae65-b2edf1a3c2d8 Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the JupyterLab interface for programming - Basic syntax and data types in Python - How to load external data into Python - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in Python #### Prerequisites: No prior experience with programming is needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/python101).** 2024-06-25 09:30:00 UTC 2024-06-26 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Surveying with Qualtrics at ACU

    26 June 2024

    Surveying with Qualtrics at ACU https://staging.dresa.org.au/events/surveying-with-qualtrics-at-acu Needing to collect data from people in a structured and intuitive way? Have you thought about using Qualtrics? Qualtrics in a powerful cloud-based survey tool, ideal for social scientists from all disciplines. This course will introduce the technical components of the whole research workflow from building a survey to analysing the results using Qualtrics. We will discover the numerous design elements available in order to get the most useful results and make life as easy as can be for your respondents. If your institution has a licence to Qualtrics, then this course is right for you. #### You'll learn: - Format a sample survey using the Qualtrics online platform - Configure the survey using a range of design features to improve user experience - Decide which distribution channel is right for your needs - Understand the available data analysis and export options in Qualtrics #### Prerequisites: You must have access to a Qualtrics instance, such as through your university license. Speak to your local university IT or Research Office for assistance in accessing the Qualtrics instance. **For more information, please click [here](https://intersect.org.au/training/course/qltrics101).** 2024-06-26 09:30:00 UTC 2024-06-26 12:30:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Surveying with Qualtrics at ACU

    26 June 2024

    Introduction to Surveying with Qualtrics at ACU https://staging.dresa.org.au/events/introduction-to-surveying-with-qualtrics-at-acu Needing to collect data from people in a structured and intuitive way? Have you thought about using Qualtrics? Qualtrics in a powerful cloud-based survey tool, ideal for social scientists from all disciplines. This course will introduce the technical components of the whole research workflow from building a survey to analysing the results using Qualtrics. We will discover the numerous design elements available in order to get the most useful results and make life as easy as can be for your respondents. If your institution has a licence to Qualtrics, then this course is right for you. #### You'll learn: - Format a sample survey using the Qualtrics online platform - Configure the survey using a range of design features to improve user experience - Decide which distribution channel is right for your needs - Understand the available data analysis and export options in Qualtrics #### Prerequisites: You must have access to a Qualtrics instance, such as through your university license. Speak to your local university IT or Research Office for assistance in accessing the Qualtrics instance. **For more information, please click [here](https://intersect.org.au/training/course/qltrics101).** 2024-06-26 09:30:00 UTC 2024-06-26 12:30:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: R at UniSA Online

    26 - 27 June 2024

    Learn to Program: R at UniSA Online https://staging.dresa.org.au/events/learn-to-program-r-at-unisa-online-88ee2a80-27ea-4abb-b343-531793e300d2 R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework. But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory course comes in. We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly. Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the RStudio interface for programming - Basic syntax and data types in R - How to load external data into R - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in R #### Prerequisites: No prior experience with programming needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/r101).** 2024-06-26 13:00:00 UTC 2024-06-27 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at Western Sydney: Online

    27 - 28 June 2024

    Excel for Researchers at Western Sydney: Online https://staging.dresa.org.au/events/excel-for-researchers-at-western-sydney-online-626a01b7-71dd-494a-ae1a-b92904f97a2e Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2024-06-27 09:30:00 UTC 2024-06-28 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Data Manipulation and Visualisation in Python at UTS Online

    27 - 28 June 2024

    Data Manipulation and Visualisation in Python at UTS Online https://staging.dresa.org.au/events/data-manipulation-and-visualisation-in-python-at-uts-online-a93394e9-3390-4c1d-84ff-57ecff54096b Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. In this workshop, you will explore DataFrames in depth (using the pandas library), learn how to manipulate, explore and get insights from your data (Data Manipulation), as well as how to deal with missing values and how to combine multiple datasets. You will also explore different types of graphs and learn how to customise them using two of the most popular plotting libraries in Python, matplotlib and seaborn (Data Visualisation). We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Working with pandas DataFrames - Indexing, slicing and subsetting in pandas DataFrames - Missing data values - Combine multiple pandas DataFrames - Using the Grammar of Graphics to convert data into figures using the seaborn and matplotlib libraries - Configuring plot elements within seaborn and matplotlib - Exploring different types of plots using seaborn #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) courses to ensure that you are familiar with the knowledge needed for this course. **For more information, please click [here](https://intersect.org.au/training/course/python203).** 2024-06-27 09:30:00 UTC 2024-06-28 12:45:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Data Manipulation and Visualisation in Python at UNSW Online

    2 - 3 July 2024

    Data Manipulation and Visualisation in Python at UNSW Online https://staging.dresa.org.au/events/data-manipulation-and-visualisation-in-python-at-unsw-online Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. In this workshop, you will explore DataFrames in depth (using the pandas library), learn how to manipulate, explore and get insights from your data (Data Manipulation), as well as how to deal with missing values and how to combine multiple datasets. You will also explore different types of graphs and learn how to customise them using two of the most popular plotting libraries in Python, matplotlib and seaborn (Data Visualisation). We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Working with pandas DataFrames - Indexing, slicing and subsetting in pandas DataFrames - Missing data values - Combine multiple pandas DataFrames - Using the Grammar of Graphics to convert data into figures using the seaborn and matplotlib libraries - Configuring plot elements within seaborn and matplotlib - Exploring different types of plots using seaborn #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) courses to ensure that you are familiar with the knowledge needed for this course. **For more information, please click [here](https://intersect.org.au/training/course/python203).** 2024-07-02 09:30:00 UTC 2024-07-03 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: SVM & Unsupervised Learning at Deakin Online

    2 July 2024

    Introduction to Machine Learning using Python: SVM & Unsupervised Learning at Deakin Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-python-svm-unsupervised-learning-at-deakin-online-b6d6df80-8cec-41a0-bb22-c91aafe270c9 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python207).** 2024-07-02 09:30:00 UTC 2024-07-02 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at Deakin Online

    3 July 2024

    Getting started with NVivo for Windows at Deakin Online https://staging.dresa.org.au/events/getting-started-with-nvivo-for-windows-at-deakin-online-bc9e158b-1201-4d94-915b-0af2caae6098 Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 14 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2024-07-03 09:30:00 UTC 2024-07-03 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Introduction & Linear Regression at UniSA Online

    3 - 4 July 2024

    Introduction to Machine Learning using R: Introduction & Linear Regression at UniSA Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-introduction-linear-regression-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** 2024-07-03 13:00:00 UTC 2024-07-04 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Exploring Chi-square and correlation in R at ACU

    4 July 2024

    Exploring Chi-square and correlation in R at ACU https://staging.dresa.org.au/events/exploring-chi-square-and-correlation-in-r-at-acu This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures for computing reliability and correlation (Pearson's r, Spearman's Rho and Kendall’s tau) in real world datasets. #### You'll learn: - Obtain inferential statistics and assess data normality - Manipulate data and create graphs - Perform Chi-Square tests (Goodness of Fit test and Test of Independence) - Perform correlations on continuous and categorical data (Pearson’s r, Spearman’s Rho and Kendall’s tau) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts, as well as familiarity with data manipulation (dplyr) and visualisation (ggplot2 package). Please consider attending Intersect’s following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r210).** 2024-07-04 09:30:00 UTC 2024-07-04 12:45:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Exploring Chi-square and correlation in R at UC Online

    4 July 2024

    Exploring Chi-square and correlation in R at UC Online https://staging.dresa.org.au/events/exploring-chi-square-and-correlation-in-r-at-uc-online This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures for computing reliability and correlation (Pearson's r, Spearman's Rho and Kendall’s tau) in real world datasets. #### You'll learn: - Obtain inferential statistics and assess data normality - Manipulate data and create graphs - Perform Chi-Square tests (Goodness of Fit test and Test of Independence) - Perform correlations on continuous and categorical data (Pearson’s r, Spearman’s Rho and Kendall’s tau) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts, as well as familiarity with data manipulation (dplyr) and visualisation (ggplot2 package). Please consider attending Intersect’s following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r210).** 2024-07-04 09:30:00 UTC 2024-07-04 12:45:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Exploring Chi-square and correlation in R at UTS Online

    4 July 2024

    Exploring Chi-square and correlation in R at UTS Online https://staging.dresa.org.au/events/exploring-chi-square-and-correlation-in-r-at-uts-online This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures for computing reliability and correlation (Pearson's r, Spearman's Rho and Kendall’s tau) in real world datasets. #### You'll learn: - Obtain inferential statistics and assess data normality - Manipulate data and create graphs - Perform Chi-Square tests (Goodness of Fit test and Test of Independence) - Perform correlations on continuous and categorical data (Pearson’s r, Spearman’s Rho and Kendall’s tau) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts, as well as familiarity with data manipulation (dplyr) and visualisation (ggplot2 package). Please consider attending Intersect’s following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r210).** 2024-07-04 09:30:00 UTC 2024-07-04 12:45:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Beyond Basics: Conditionals and Visualisation in Excel at Deakin Online

    9 July 2024

    Beyond Basics: Conditionals and Visualisation in Excel at Deakin Online https://staging.dresa.org.au/events/beyond-basics-conditionals-and-visualisation-in-excel-at-deakin-online After cleaning your database, you may need to apply some conditional analysis to glean greater insights from your data. You may also want to enhance your charts for inclusion into a manuscript, thesis or report by adding some statistical elements. This course will cover conditional syntax, nested functions, statistical charting and outlier identification. Armed with the tips and tricks from our introductory Excel for Researchers course, you will be able to tap into even more of Excel's diverse functionality and apply it to your research project. #### You'll learn: - Cell syntax and conditional formatting - IF functions - Pivot Table summaries - Nesting multiple AND/IF/OR calculations - Combining nested calculations with conditional formatting to bring out important elements of the dataset - MINIFS function - Box plot creation and outlier identification - Trendline and error bar chart enhancements #### Prerequisites: Familiarity with the content of Excel for Researchers, specifically: the general Office/Excel interface (menus, ribbons/toolbars, etc.) workbooks and worksheets absolute and relative references, e.g. $A$1, A1. simple ranges, e.g. A1:B5 **For more information, please click [here](https://intersect.org.au/training/course/excel201).** 2024-07-09 09:30:00 UTC 2024-07-09 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at UNE Online

    10 July 2024

    Excel for Researchers at UNE Online https://staging.dresa.org.au/events/excel-for-researchers-at-une-online Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there’s too much of it. Frequently, it has errors. We’ll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: ‘Clean up’ messy research data Organise, format and name your data Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) Perform calculations on your data using functions (MAX, MIN, AVERAGE) Extract significant findings from your data (PIVOT TABLE, VLOOKUP) Manipulate your data (convert data format, work with DATES and TIMES) Create graphs and charts to visualise your data (CHARTS) Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software.   For more information, please click [here](https://intersect.org.au/training/course/EXCEL101). 2024-07-10 11:00:00 UTC 2024-07-10 16:00:00 UTC Intersect Australia Australia Australia Intersect test training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Classification at UniSA Online

    10 - 11 July 2024

    Introduction to Machine Learning using R: Classification at UniSA Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-classification-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r206).** 2024-07-10 13:00:00 UTC 2024-07-11 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Exploring ANOVAs in R at ACU

    11 July 2024

    Exploring ANOVAs in R at ACU https://staging.dresa.org.au/events/exploring-anovas-in-r-at-acu R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. This half-day course covers one and two-way Analyses of Variance (ANOVA) and their non-parametric counterparts in R. To better understand the tests, assumptions and associated concepts, we will be using a dataset containing the Mathematics scores of secondary students. This dataset also includes information regarding their mother's and father's jobs and education levels, the number of hours dedicated to study, and time spent commuting to and from school. Lifestyle information about alcohol consumption habits, whether the students have quality relationships with their families and whether they have free time after school is included in this dataset. #### You'll learn: - Basic statistical theory behind ANOVAs - How to check that the data meets the assumptions - One-way ANOVA in R and post-hoc analysis - Two-way ANOVA plus interaction effects and post-hoc analysis - Non-parametric alternatives to one and two-way ANOVA #### Prerequisites: This course assumes an intermediate level of programming proficiency, plus familiarity with the syntax and functions of the dplyr and ggplot2 packages. Experience navigating the RStudio integrated development environment (IDE) is also required. If you’re new to programming in R, we strongly recommend you register for the [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) workshops first. **For more information, please click [here](https://intersect.org.au/training/course/r212).** 2024-07-11 09:30:00 UTC 2024-07-11 12:45:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Exploring ANOVAs in R at UC Online

    11 July 2024

    Exploring ANOVAs in R at UC Online https://staging.dresa.org.au/events/exploring-anovas-in-r-at-uc-online R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. This half-day course covers one and two-way Analyses of Variance (ANOVA) and their non-parametric counterparts in R. To better understand the tests, assumptions and associated concepts, we will be using a dataset containing the Mathematics scores of secondary students. This dataset also includes information regarding their mother's and father's jobs and education levels, the number of hours dedicated to study, and time spent commuting to and from school. Lifestyle information about alcohol consumption habits, whether the students have quality relationships with their families and whether they have free time after school is included in this dataset. #### You'll learn: - Basic statistical theory behind ANOVAs - How to check that the data meets the assumptions - One-way ANOVA in R and post-hoc analysis - Two-way ANOVA plus interaction effects and post-hoc analysis - Non-parametric alternatives to one and two-way ANOVA #### Prerequisites: This course assumes an intermediate level of programming proficiency, plus familiarity with the syntax and functions of the dplyr and ggplot2 packages. Experience navigating the RStudio integrated development environment (IDE) is also required. If you’re new to programming in R, we strongly recommend you register for the [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) workshops first. **For more information, please click [here](https://intersect.org.au/training/course/r212).** 2024-07-11 09:30:00 UTC 2024-07-11 12:45:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Exploring ANOVAs in R at UTS Online

    11 July 2024

    Exploring ANOVAs in R at UTS Online https://staging.dresa.org.au/events/exploring-anovas-in-r-at-uts-online R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. This half-day course covers one and two-way Analyses of Variance (ANOVA) and their non-parametric counterparts in R. To better understand the tests, assumptions and associated concepts, we will be using a dataset containing the Mathematics scores of secondary students. This dataset also includes information regarding their mother's and father's jobs and education levels, the number of hours dedicated to study, and time spent commuting to and from school. Lifestyle information about alcohol consumption habits, whether the students have quality relationships with their families and whether they have free time after school is included in this dataset. #### You'll learn: - Basic statistical theory behind ANOVAs - How to check that the data meets the assumptions - One-way ANOVA in R and post-hoc analysis - Two-way ANOVA plus interaction effects and post-hoc analysis - Non-parametric alternatives to one and two-way ANOVA #### Prerequisites: This course assumes an intermediate level of programming proficiency, plus familiarity with the syntax and functions of the dplyr and ggplot2 packages. Experience navigating the RStudio integrated development environment (IDE) is also required. If you’re new to programming in R, we strongly recommend you register for the [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) workshops first. **For more information, please click [here](https://intersect.org.au/training/course/r212).** 2024-07-11 09:30:00 UTC 2024-07-11 12:45:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: R at Western Sydney: Online

    11 - 12 July 2024

    Learn to Program: R at Western Sydney: Online https://staging.dresa.org.au/events/learn-to-program-r-at-western-sydney-online-11e6292b-6e3f-486f-81a3-00d5c3196646 R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework. But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory course comes in. We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly. Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the RStudio interface for programming - Basic syntax and data types in R - How to load external data into R - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in R #### Prerequisites: No prior experience with programming needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/r101).** 2024-07-11 09:30:00 UTC 2024-07-12 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Introduction & Linear Regression at Deakin Online

    16 - 17 July 2024

    Introduction to Machine Learning using R: Introduction & Linear Regression at Deakin Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-introduction-linear-regression-at-deakin-online-f523c309-eba9-4bb5-ba53-28be5141f22d Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** 2024-07-16 09:30:00 UTC 2024-07-17 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Traversing t tests in R at ACU

    17 July 2024

    Traversing t tests in R at ACU https://staging.dresa.org.au/events/traversing-t-tests-in-r-at-acu R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. The primary goal of this workshop is to familiarise you with basic statistical concepts in R from reading in and manipulating data, checking assumptions, statistical tests and visualisations. This is not an advanced statistics course, but is instead designed to gently introduce you to statistical comparisons and hypothesis testing in R. #### You'll learn: - Read in and manipulate data - Check assumptions of t tests - Perform one-sample t tests - Perform two-sample t tests (Independent-samples, Paired-samples) - Perform nonparametric t tests (One-sample Wilcoxon Signed Rank test, Independent-samples Mann-Whitney U test) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts. Please consider attending Intersect's following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r211).** 2024-07-17 09:30:00 UTC 2024-07-17 12:45:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Traversing t tests in R at UC Online

    17 July 2024

    Traversing t tests in R at UC Online https://staging.dresa.org.au/events/traversing-t-tests-in-r-at-uc-online R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. The primary goal of this workshop is to familiarise you with basic statistical concepts in R from reading in and manipulating data, checking assumptions, statistical tests and visualisations. This is not an advanced statistics course, but is instead designed to gently introduce you to statistical comparisons and hypothesis testing in R. #### You'll learn: - Read in and manipulate data - Check assumptions of t tests - Perform one-sample t tests - Perform two-sample t tests (Independent-samples, Paired-samples) - Perform nonparametric t tests (One-sample Wilcoxon Signed Rank test, Independent-samples Mann-Whitney U test) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts. Please consider attending Intersect's following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r211).** 2024-07-17 09:30:00 UTC 2024-07-17 12:45:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Traversing t tests in R at UTS Online

    17 July 2024

    Traversing t tests in R at UTS Online https://staging.dresa.org.au/events/traversing-t-tests-in-r-at-uts-online R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. The primary goal of this workshop is to familiarise you with basic statistical concepts in R from reading in and manipulating data, checking assumptions, statistical tests and visualisations. This is not an advanced statistics course, but is instead designed to gently introduce you to statistical comparisons and hypothesis testing in R. #### You'll learn: - Read in and manipulate data - Check assumptions of t tests - Perform one-sample t tests - Perform two-sample t tests (Independent-samples, Paired-samples) - Perform nonparametric t tests (One-sample Wilcoxon Signed Rank test, Independent-samples Mann-Whitney U test) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts. Please consider attending Intersect's following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r211).** 2024-07-17 09:30:00 UTC 2024-07-17 12:45:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: SVM & Unsupervised Learning at UniSA Online

    17 July 2024

    Introduction to Machine Learning using R: SVM & Unsupervised Learning at UniSA Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-svm-unsupervised-learning-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in the courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r207).** 2024-07-17 13:00:00 UTC 2024-07-17 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Introduction & Linear Regression at UNSW Online

    23 - 24 July 2024

    Introduction to Machine Learning using Python: Introduction & Linear Regression at UNSW Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-python-introduction-linear-regression-at-unsw-online-435bb487-392f-4e7f-b778-71f71b48081b Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax and basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python205).** 2024-07-23 09:30:00 UTC 2024-07-24 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Classification at Deakin Online

    24 - 25 July 2024

    Introduction to Machine Learning using R: Classification at Deakin Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-classification-at-deakin-online-9ba54359-79da-4e2c-bd46-6cad2f24583d Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r206).** 2024-07-24 09:30:00 UTC 2024-07-25 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Getting Started with NVivo for Mac at ACU

    18 June 2024

    Getting Started with NVivo for Mac at ACU https://staging.dresa.org.au/events/getting-started-with-nvivo-for-mac-at-acu Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 14 Pro for Mac and is not suitable for NVivo for Windows users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo102).** 2024-06-18 09:30:00 UTC 2024-06-18 12:30:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Getting Started with NVivo for Mac at UNSW Online

    18 June 2024

    Getting Started with NVivo for Mac at UNSW Online https://staging.dresa.org.au/events/getting-started-with-nvivo-for-mac-at-unsw-online Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 14 Pro for Mac and is not suitable for NVivo for Windows users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo102).** 2024-06-18 09:30:00 UTC 2024-06-18 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Classification at Deakin Online

    25 - 26 June 2024

    Introduction to Machine Learning using Python: Classification at Deakin Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-python-classification-at-deakin-online-fd3303fb-988e-49f8-9a94-bbc65aaccce0 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python206).** 2024-06-25 09:30:00 UTC 2024-06-26 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: Python at UNSW Online

    25 - 26 June 2024

    Learn to Program: Python at UNSW Online https://staging.dresa.org.au/events/learn-to-program-python-at-unsw-online-ff4afa74-2894-41e1-ae65-b2edf1a3c2d8 Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the JupyterLab interface for programming - Basic syntax and data types in Python - How to load external data into Python - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in Python #### Prerequisites: No prior experience with programming is needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/python101).** 2024-06-25 09:30:00 UTC 2024-06-26 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Surveying with Qualtrics at ACU

    26 June 2024

    Surveying with Qualtrics at ACU https://staging.dresa.org.au/events/surveying-with-qualtrics-at-acu Needing to collect data from people in a structured and intuitive way? Have you thought about using Qualtrics? Qualtrics in a powerful cloud-based survey tool, ideal for social scientists from all disciplines. This course will introduce the technical components of the whole research workflow from building a survey to analysing the results using Qualtrics. We will discover the numerous design elements available in order to get the most useful results and make life as easy as can be for your respondents. If your institution has a licence to Qualtrics, then this course is right for you. #### You'll learn: - Format a sample survey using the Qualtrics online platform - Configure the survey using a range of design features to improve user experience - Decide which distribution channel is right for your needs - Understand the available data analysis and export options in Qualtrics #### Prerequisites: You must have access to a Qualtrics instance, such as through your university license. Speak to your local university IT or Research Office for assistance in accessing the Qualtrics instance. **For more information, please click [here](https://intersect.org.au/training/course/qltrics101).** 2024-06-26 09:30:00 UTC 2024-06-26 12:30:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Surveying with Qualtrics at ACU

    26 June 2024

    Introduction to Surveying with Qualtrics at ACU https://staging.dresa.org.au/events/introduction-to-surveying-with-qualtrics-at-acu Needing to collect data from people in a structured and intuitive way? Have you thought about using Qualtrics? Qualtrics in a powerful cloud-based survey tool, ideal for social scientists from all disciplines. This course will introduce the technical components of the whole research workflow from building a survey to analysing the results using Qualtrics. We will discover the numerous design elements available in order to get the most useful results and make life as easy as can be for your respondents. If your institution has a licence to Qualtrics, then this course is right for you. #### You'll learn: - Format a sample survey using the Qualtrics online platform - Configure the survey using a range of design features to improve user experience - Decide which distribution channel is right for your needs - Understand the available data analysis and export options in Qualtrics #### Prerequisites: You must have access to a Qualtrics instance, such as through your university license. Speak to your local university IT or Research Office for assistance in accessing the Qualtrics instance. **For more information, please click [here](https://intersect.org.au/training/course/qltrics101).** 2024-06-26 09:30:00 UTC 2024-06-26 12:30:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: R at UniSA Online

    26 - 27 June 2024

    Learn to Program: R at UniSA Online https://staging.dresa.org.au/events/learn-to-program-r-at-unisa-online-88ee2a80-27ea-4abb-b343-531793e300d2 R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework. But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory course comes in. We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly. Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the RStudio interface for programming - Basic syntax and data types in R - How to load external data into R - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in R #### Prerequisites: No prior experience with programming needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/r101).** 2024-06-26 13:00:00 UTC 2024-06-27 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at Western Sydney: Online

    27 - 28 June 2024

    Excel for Researchers at Western Sydney: Online https://staging.dresa.org.au/events/excel-for-researchers-at-western-sydney-online-626a01b7-71dd-494a-ae1a-b92904f97a2e Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there's too much of it. Frequently, it has errors. We'll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: - 'Clean up’ messy research data - Organise, format and name your data - Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) - Perform calculations on your data using functions (MAX, MIN, AVERAGE) - Extract significant findings from your data (PIVOT TABLE, VLOOKUP) - Manipulate your data (convert data format, work with DATES and TIMES) - Create graphs and charts to visualise your data (CHARTS) - Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. **For more information, please click [here](https://intersect.org.au/training/course/excel101).** 2024-06-27 09:30:00 UTC 2024-06-28 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Data Manipulation and Visualisation in Python at UTS Online

    27 - 28 June 2024

    Data Manipulation and Visualisation in Python at UTS Online https://staging.dresa.org.au/events/data-manipulation-and-visualisation-in-python-at-uts-online-a93394e9-3390-4c1d-84ff-57ecff54096b Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. In this workshop, you will explore DataFrames in depth (using the pandas library), learn how to manipulate, explore and get insights from your data (Data Manipulation), as well as how to deal with missing values and how to combine multiple datasets. You will also explore different types of graphs and learn how to customise them using two of the most popular plotting libraries in Python, matplotlib and seaborn (Data Visualisation). We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Working with pandas DataFrames - Indexing, slicing and subsetting in pandas DataFrames - Missing data values - Combine multiple pandas DataFrames - Using the Grammar of Graphics to convert data into figures using the seaborn and matplotlib libraries - Configuring plot elements within seaborn and matplotlib - Exploring different types of plots using seaborn #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) courses to ensure that you are familiar with the knowledge needed for this course. **For more information, please click [here](https://intersect.org.au/training/course/python203).** 2024-06-27 09:30:00 UTC 2024-06-28 12:45:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Data Manipulation and Visualisation in Python at UNSW Online

    2 - 3 July 2024

    Data Manipulation and Visualisation in Python at UNSW Online https://staging.dresa.org.au/events/data-manipulation-and-visualisation-in-python-at-unsw-online Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. In this workshop, you will explore DataFrames in depth (using the pandas library), learn how to manipulate, explore and get insights from your data (Data Manipulation), as well as how to deal with missing values and how to combine multiple datasets. You will also explore different types of graphs and learn how to customise them using two of the most popular plotting libraries in Python, matplotlib and seaborn (Data Visualisation). We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Working with pandas DataFrames - Indexing, slicing and subsetting in pandas DataFrames - Missing data values - Combine multiple pandas DataFrames - Using the Grammar of Graphics to convert data into figures using the seaborn and matplotlib libraries - Configuring plot elements within seaborn and matplotlib - Exploring different types of plots using seaborn #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Python for Research](https://intersect.org.au/training/course/python110/) courses to ensure that you are familiar with the knowledge needed for this course. **For more information, please click [here](https://intersect.org.au/training/course/python203).** 2024-07-02 09:30:00 UTC 2024-07-03 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: SVM & Unsupervised Learning at Deakin Online

    2 July 2024

    Introduction to Machine Learning using Python: SVM & Unsupervised Learning at Deakin Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-python-svm-unsupervised-learning-at-deakin-online-b6d6df80-8cec-41a0-bb22-c91aafe270c9 Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) and [Introduction to ML using Python: Introduction & Linear Regression](https://intersect.org.au/training/course/python205/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python207).** 2024-07-02 09:30:00 UTC 2024-07-02 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Getting started with NVivo for Windows at Deakin Online

    3 July 2024

    Getting started with NVivo for Windows at Deakin Online https://staging.dresa.org.au/events/getting-started-with-nvivo-for-windows-at-deakin-online-bc9e158b-1201-4d94-915b-0af2caae6098 Does your research see you working through unstructured and non-numerical data? With the ability to collect, store and analyse different data types all in the one location makes, it's easy to see why NVivo is becoming the tool of choice for many researchers. NVivo allows researchers to simply organise and manage data from a variety of sources including surveys, interviews, articles, video, email, social media and web content, PDFs and images. Coding your data allows you to discover trends and compares themes as they emerge across different sources and data types. Using NVivo memos and visualisations combined with the ability to integrate with popular bibliographic tools you can get your research ready for publication sooner. #### You'll learn: - Create and organise a qualitative research project in NVivo - Import a range of data sources using NVivo's integrated tools - Code and classify your data - Format your data to take advantage of NVivo’s auto-coding ability - Use NVivo to discover new themes and trends in research - Visualise relationships and trends in your data #### Prerequisites: In order to participate, attendees must have a licensed copy of NVivo installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This course is taught using NVivo 14 Pro for Windows and is not suitable for NVivo for Mac users. **For more information, please click [here](https://intersect.org.au/training/course/nvivo101).** 2024-07-03 09:30:00 UTC 2024-07-03 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Introduction & Linear Regression at UniSA Online

    3 - 4 July 2024

    Introduction to Machine Learning using R: Introduction & Linear Regression at UniSA Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-introduction-linear-regression-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** 2024-07-03 13:00:00 UTC 2024-07-04 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Exploring Chi-square and correlation in R at ACU

    4 July 2024

    Exploring Chi-square and correlation in R at ACU https://staging.dresa.org.au/events/exploring-chi-square-and-correlation-in-r-at-acu This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures for computing reliability and correlation (Pearson's r, Spearman's Rho and Kendall’s tau) in real world datasets. #### You'll learn: - Obtain inferential statistics and assess data normality - Manipulate data and create graphs - Perform Chi-Square tests (Goodness of Fit test and Test of Independence) - Perform correlations on continuous and categorical data (Pearson’s r, Spearman’s Rho and Kendall’s tau) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts, as well as familiarity with data manipulation (dplyr) and visualisation (ggplot2 package). Please consider attending Intersect’s following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r210).** 2024-07-04 09:30:00 UTC 2024-07-04 12:45:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Exploring Chi-square and correlation in R at UC Online

    4 July 2024

    Exploring Chi-square and correlation in R at UC Online https://staging.dresa.org.au/events/exploring-chi-square-and-correlation-in-r-at-uc-online This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures for computing reliability and correlation (Pearson's r, Spearman's Rho and Kendall’s tau) in real world datasets. #### You'll learn: - Obtain inferential statistics and assess data normality - Manipulate data and create graphs - Perform Chi-Square tests (Goodness of Fit test and Test of Independence) - Perform correlations on continuous and categorical data (Pearson’s r, Spearman’s Rho and Kendall’s tau) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts, as well as familiarity with data manipulation (dplyr) and visualisation (ggplot2 package). Please consider attending Intersect’s following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r210).** 2024-07-04 09:30:00 UTC 2024-07-04 12:45:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Exploring Chi-square and correlation in R at UTS Online

    4 July 2024

    Exploring Chi-square and correlation in R at UTS Online https://staging.dresa.org.au/events/exploring-chi-square-and-correlation-in-r-at-uts-online This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures for computing reliability and correlation (Pearson's r, Spearman's Rho and Kendall’s tau) in real world datasets. #### You'll learn: - Obtain inferential statistics and assess data normality - Manipulate data and create graphs - Perform Chi-Square tests (Goodness of Fit test and Test of Independence) - Perform correlations on continuous and categorical data (Pearson’s r, Spearman’s Rho and Kendall’s tau) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts, as well as familiarity with data manipulation (dplyr) and visualisation (ggplot2 package). Please consider attending Intersect’s following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r210).** 2024-07-04 09:30:00 UTC 2024-07-04 12:45:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Beyond Basics: Conditionals and Visualisation in Excel at Deakin Online

    9 July 2024

    Beyond Basics: Conditionals and Visualisation in Excel at Deakin Online https://staging.dresa.org.au/events/beyond-basics-conditionals-and-visualisation-in-excel-at-deakin-online After cleaning your database, you may need to apply some conditional analysis to glean greater insights from your data. You may also want to enhance your charts for inclusion into a manuscript, thesis or report by adding some statistical elements. This course will cover conditional syntax, nested functions, statistical charting and outlier identification. Armed with the tips and tricks from our introductory Excel for Researchers course, you will be able to tap into even more of Excel's diverse functionality and apply it to your research project. #### You'll learn: - Cell syntax and conditional formatting - IF functions - Pivot Table summaries - Nesting multiple AND/IF/OR calculations - Combining nested calculations with conditional formatting to bring out important elements of the dataset - MINIFS function - Box plot creation and outlier identification - Trendline and error bar chart enhancements #### Prerequisites: Familiarity with the content of Excel for Researchers, specifically: the general Office/Excel interface (menus, ribbons/toolbars, etc.) workbooks and worksheets absolute and relative references, e.g. $A$1, A1. simple ranges, e.g. A1:B5 **For more information, please click [here](https://intersect.org.au/training/course/excel201).** 2024-07-09 09:30:00 UTC 2024-07-09 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Excel for Researchers at UNE Online

    10 July 2024

    Excel for Researchers at UNE Online https://staging.dresa.org.au/events/excel-for-researchers-at-une-online Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there’s too much of it. Frequently, it has errors. We’ll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. #### You'll learn: ‘Clean up’ messy research data Organise, format and name your data Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) Perform calculations on your data using functions (MAX, MIN, AVERAGE) Extract significant findings from your data (PIVOT TABLE, VLOOKUP) Manipulate your data (convert data format, work with DATES and TIMES) Create graphs and charts to visualise your data (CHARTS) Handy tips to speed up your work #### Prerequisites: In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software.   For more information, please click [here](https://intersect.org.au/training/course/EXCEL101). 2024-07-10 11:00:00 UTC 2024-07-10 16:00:00 UTC Intersect Australia Australia Australia Intersect test training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Classification at UniSA Online

    10 - 11 July 2024

    Introduction to Machine Learning using R: Classification at UniSA Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-classification-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r206).** 2024-07-10 13:00:00 UTC 2024-07-11 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Exploring ANOVAs in R at ACU

    11 July 2024

    Exploring ANOVAs in R at ACU https://staging.dresa.org.au/events/exploring-anovas-in-r-at-acu R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. This half-day course covers one and two-way Analyses of Variance (ANOVA) and their non-parametric counterparts in R. To better understand the tests, assumptions and associated concepts, we will be using a dataset containing the Mathematics scores of secondary students. This dataset also includes information regarding their mother's and father's jobs and education levels, the number of hours dedicated to study, and time spent commuting to and from school. Lifestyle information about alcohol consumption habits, whether the students have quality relationships with their families and whether they have free time after school is included in this dataset. #### You'll learn: - Basic statistical theory behind ANOVAs - How to check that the data meets the assumptions - One-way ANOVA in R and post-hoc analysis - Two-way ANOVA plus interaction effects and post-hoc analysis - Non-parametric alternatives to one and two-way ANOVA #### Prerequisites: This course assumes an intermediate level of programming proficiency, plus familiarity with the syntax and functions of the dplyr and ggplot2 packages. Experience navigating the RStudio integrated development environment (IDE) is also required. If you’re new to programming in R, we strongly recommend you register for the [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) workshops first. **For more information, please click [here](https://intersect.org.au/training/course/r212).** 2024-07-11 09:30:00 UTC 2024-07-11 12:45:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Exploring ANOVAs in R at UC Online

    11 July 2024

    Exploring ANOVAs in R at UC Online https://staging.dresa.org.au/events/exploring-anovas-in-r-at-uc-online R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. This half-day course covers one and two-way Analyses of Variance (ANOVA) and their non-parametric counterparts in R. To better understand the tests, assumptions and associated concepts, we will be using a dataset containing the Mathematics scores of secondary students. This dataset also includes information regarding their mother's and father's jobs and education levels, the number of hours dedicated to study, and time spent commuting to and from school. Lifestyle information about alcohol consumption habits, whether the students have quality relationships with their families and whether they have free time after school is included in this dataset. #### You'll learn: - Basic statistical theory behind ANOVAs - How to check that the data meets the assumptions - One-way ANOVA in R and post-hoc analysis - Two-way ANOVA plus interaction effects and post-hoc analysis - Non-parametric alternatives to one and two-way ANOVA #### Prerequisites: This course assumes an intermediate level of programming proficiency, plus familiarity with the syntax and functions of the dplyr and ggplot2 packages. Experience navigating the RStudio integrated development environment (IDE) is also required. If you’re new to programming in R, we strongly recommend you register for the [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) workshops first. **For more information, please click [here](https://intersect.org.au/training/course/r212).** 2024-07-11 09:30:00 UTC 2024-07-11 12:45:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Exploring ANOVAs in R at UTS Online

    11 July 2024

    Exploring ANOVAs in R at UTS Online https://staging.dresa.org.au/events/exploring-anovas-in-r-at-uts-online R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. This half-day course covers one and two-way Analyses of Variance (ANOVA) and their non-parametric counterparts in R. To better understand the tests, assumptions and associated concepts, we will be using a dataset containing the Mathematics scores of secondary students. This dataset also includes information regarding their mother's and father's jobs and education levels, the number of hours dedicated to study, and time spent commuting to and from school. Lifestyle information about alcohol consumption habits, whether the students have quality relationships with their families and whether they have free time after school is included in this dataset. #### You'll learn: - Basic statistical theory behind ANOVAs - How to check that the data meets the assumptions - One-way ANOVA in R and post-hoc analysis - Two-way ANOVA plus interaction effects and post-hoc analysis - Non-parametric alternatives to one and two-way ANOVA #### Prerequisites: This course assumes an intermediate level of programming proficiency, plus familiarity with the syntax and functions of the dplyr and ggplot2 packages. Experience navigating the RStudio integrated development environment (IDE) is also required. If you’re new to programming in R, we strongly recommend you register for the [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) workshops first. **For more information, please click [here](https://intersect.org.au/training/course/r212).** 2024-07-11 09:30:00 UTC 2024-07-11 12:45:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Learn to Program: R at Western Sydney: Online

    11 - 12 July 2024

    Learn to Program: R at Western Sydney: Online https://staging.dresa.org.au/events/learn-to-program-r-at-western-sydney-online-11e6292b-6e3f-486f-81a3-00d5c3196646 R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework. But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory course comes in. We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly. Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the RStudio interface for programming - Basic syntax and data types in R - How to load external data into R - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in R #### Prerequisites: No prior experience with programming needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/r101).** 2024-07-11 09:30:00 UTC 2024-07-12 12:30:00 UTC Intersect Australia Australia Australia WSU training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Introduction & Linear Regression at Deakin Online

    16 - 17 July 2024

    Introduction to Machine Learning using R: Introduction & Linear Regression at Deakin Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-introduction-linear-regression-at-deakin-online-f523c309-eba9-4bb5-ba53-28be5141f22d Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** 2024-07-16 09:30:00 UTC 2024-07-17 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []
  • Traversing t tests in R at ACU

    17 July 2024

    Traversing t tests in R at ACU https://staging.dresa.org.au/events/traversing-t-tests-in-r-at-acu R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. The primary goal of this workshop is to familiarise you with basic statistical concepts in R from reading in and manipulating data, checking assumptions, statistical tests and visualisations. This is not an advanced statistics course, but is instead designed to gently introduce you to statistical comparisons and hypothesis testing in R. #### You'll learn: - Read in and manipulate data - Check assumptions of t tests - Perform one-sample t tests - Perform two-sample t tests (Independent-samples, Paired-samples) - Perform nonparametric t tests (One-sample Wilcoxon Signed Rank test, Independent-samples Mann-Whitney U test) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts. Please consider attending Intersect's following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r211).** 2024-07-17 09:30:00 UTC 2024-07-17 12:45:00 UTC Intersect Australia Australia Australia ACU training@intersect.org.au [] [] [] host_institution []
  • Traversing t tests in R at UC Online

    17 July 2024

    Traversing t tests in R at UC Online https://staging.dresa.org.au/events/traversing-t-tests-in-r-at-uc-online R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. The primary goal of this workshop is to familiarise you with basic statistical concepts in R from reading in and manipulating data, checking assumptions, statistical tests and visualisations. This is not an advanced statistics course, but is instead designed to gently introduce you to statistical comparisons and hypothesis testing in R. #### You'll learn: - Read in and manipulate data - Check assumptions of t tests - Perform one-sample t tests - Perform two-sample t tests (Independent-samples, Paired-samples) - Perform nonparametric t tests (One-sample Wilcoxon Signed Rank test, Independent-samples Mann-Whitney U test) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts. Please consider attending Intersect's following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r211).** 2024-07-17 09:30:00 UTC 2024-07-17 12:45:00 UTC Intersect Australia Australia Australia UC training@intersect.org.au [] [] [] host_institution []
  • Traversing t tests in R at UTS Online

    17 July 2024

    Traversing t tests in R at UTS Online https://staging.dresa.org.au/events/traversing-t-tests-in-r-at-uts-online R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. The primary goal of this workshop is to familiarise you with basic statistical concepts in R from reading in and manipulating data, checking assumptions, statistical tests and visualisations. This is not an advanced statistics course, but is instead designed to gently introduce you to statistical comparisons and hypothesis testing in R. #### You'll learn: - Read in and manipulate data - Check assumptions of t tests - Perform one-sample t tests - Perform two-sample t tests (Independent-samples, Paired-samples) - Perform nonparametric t tests (One-sample Wilcoxon Signed Rank test, Independent-samples Mann-Whitney U test) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts. Please consider attending Intersect's following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r211).** 2024-07-17 09:30:00 UTC 2024-07-17 12:45:00 UTC Intersect Australia Australia Australia UTS training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: SVM & Unsupervised Learning at UniSA Online

    17 July 2024

    Introduction to Machine Learning using R: SVM & Unsupervised Learning at UniSA Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-svm-unsupervised-learning-at-unisa-online Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in the courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r207).** 2024-07-17 13:00:00 UTC 2024-07-17 16:00:00 UTC Intersect Australia Australia Australia UniSA training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using Python: Introduction & Linear Regression at UNSW Online

    23 - 24 July 2024

    Introduction to Machine Learning using Python: Introduction & Linear Regression at UNSW Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-python-introduction-linear-regression-at-unsw-online-435bb487-392f-4e7f-b778-71f71b48081b Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use Python and scikit-learn to process real datasets, train and apply Machine Learning models #### Prerequisites: Either [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation in Python](https://intersect.org.au/training/course/python201/) or [Learn to Program: Python](https://intersect.org.au/training/course/python101/) and [Data Manipulation and Visualisation in Python](https://intersect.org.au/training/course/python203/) needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax and basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using Python workshops: - Introduction to Machine Learning using Python: Introduction & Linear Regression - Introduction to Machine Learning using Python: Classification - Introduction to Machine Learning using Python: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/python205).** 2024-07-23 09:30:00 UTC 2024-07-24 12:30:00 UTC Intersect Australia Australia Australia UNSW training@intersect.org.au [] [] [] host_institution []
  • Introduction to Machine Learning using R: Classification at Deakin Online

    24 - 25 July 2024

    Introduction to Machine Learning using R: Classification at Deakin Online https://staging.dresa.org.au/events/introduction-to-machine-learning-using-r-classification-at-deakin-online-9ba54359-79da-4e2c-bd46-6cad2f24583d Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r206).** 2024-07-24 09:30:00 UTC 2024-07-25 12:30:00 UTC Intersect Australia Australia Australia Deakin training@intersect.org.au [] [] [] host_institution []

Note, this map only displays events that have geolocation information in DReSA (Staging).
For the complete list of events in DReSA (Staging), click the grid tab.