Introduction to Machine Learning using Python: Classification

Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries.

Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning.

Know the differences between various core Machine Learning models.

Understand the Machine Learning modelling workflows.

Use Python and scikit-learn to process real datasets, train and apply Machine Learning models.

Either \Learn to Program: Python\, \Data Manipulation in Python\ and \Introduction to ML using Python: Introduction & Linear Regression\ or \Learn to Program: Python\, \Data Manipulation and Visualisation in Python\ and \Introduction to ML using Python: Introduction & Linear Regression\ needed to attend this course. 

If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training.

Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them.

DOI: 10.5281/zenodo.6423726

Licence: All Rights Reserved

Contact: training@intersect.org.au

Keywords: Python


Additional information

Status: Active

Authors: Intersect Australia

Introduction to Machine Learning using Python: Classification https://staging.dresa.org.au/materials/introduction-to-machine-learning-using-python-classification Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the Python programming language and its scientific computing libraries. Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. Know the differences between various core Machine Learning models. Understand the Machine Learning modelling workflows. Use Python and scikit-learn to process real datasets, train and apply Machine Learning models. Either \Learn to Program: Python\, \Data Manipulation in Python\ and \Introduction to ML using Python: Introduction & Linear Regression\ or \Learn to Program: Python\, \Data Manipulation and Visualisation in Python\ and \Introduction to ML using Python: Introduction & Linear Regression\ needed to attend this course.  If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of Python syntax, basic programming concepts and familiarity with Pandas, Numpy and Seaborn libraries, and basic understanding of Machine Learning and Model Training. Maths knowledge is not required. However, there is a few Math formula covered in this course and the references will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. training@intersect.org.au Python