Showing 19 material.
WORKSHOP: Hybrid de novo genome assembly
This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021.
Workshop description
It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches...
Keywords: Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly
WORKSHOP: Hybrid de novo genome assembly
https://zenodo.org/record/5781781
https://staging.dresa.org.au/materials/workshop-hybrid-de-novo-genome-assembly
This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021.
Workshop description
It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches which enable research on organisms for which reference genomes were not previously available. These approaches combine the strengths of short (Illumina) and long (PacBio or Nanopore) read technologies, resulting in improved assembly quality.
In this workshop we will learn how to create and assess genome assemblies from Illumina and Nanopore reads using data from a Bacillus Subtilis strain. We will demonstrate two hybrid-assembly methods using the tools Flye, Pilon, and Unicycler to perform assembly and subsequent error correction. You will learn how to visualise input read sets and the assemblies produced at each stage and assess the quality of the final assembly.
All analyses will be performed using Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience.
This workshop is presented by the Australian BioCommons and Melbourne Bioinformatics with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Materials shared elsewhere:
This workshop follows the tutorial ‘Hybrid genome assembly - Nanopore and Illumina’ developed by Melbourne Bioinformatics.
https://www.melbournebioinformatics.org.au/tutorials/tutorials/hybrid_assembly/nanopore_assembly/
Melissa Burke (melissa@biocommons.org.au)
Hall, Grace (orcid: 0000-0002-5105-8347)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Makunin, Igor
Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly
WEBINAR: Getting started with command line bioinformatics
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with command line bioinformatics’. This webinar took place on 22 June 2021.
Bioinformatics skills are in demand like never before and biologists are stepping up to the challenge of...
Keywords: Bioinformatics, Command line, Workflows, Bash, Computational biology
WEBINAR: Getting started with command line bioinformatics
https://zenodo.org/record/5068997
https://staging.dresa.org.au/materials/webinar-getting-started-with-command-line-bioinformatics
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with command line bioinformatics’. This webinar took place on 22 June 2021.
Bioinformatics skills are in demand like never before and biologists are stepping up to the challenge of learning to analyse large and ever growing datasets. Learning how to use the command line can open up many options for data analysis but getting started can be a little daunting for those without a background in computer science.
Parice Brandies and Carolyn Hogg have recently put together ten simple rules for getting started with command-line bioinformatics to help biologists begin their computational journeys. In this webinar Parice walks you through their hints and tips for getting started with the command line. She covers topics like learning tech speak, evaluating your data and workflows, assessing computational requirements, computing options, the basics of software installation, curating and testing scripts, a bit of bash and keeping good records. The webinar will be followed by a short Q&A session.
The slides were created by Parice Brandies and are based on the publication ‘Ten simple rules for getting started with command-line bioinformatics’ (https://doi.org/10.1371/journal.pcbi.1008645). The slides are shared under a Creative Commons Attribution 4.0 International unless otherwise specified and were current at the time of the webinar.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Getting started with command line bioinformatics - slides (PDF): Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel
https://youtu.be/p7pA4OLB2X4
Melissa Burke (melissa@biocommons.org.au)
Brandies, Parice (orcid: 0000-0003-1702-2938)
Hogg, Carolyn (type: Supervisor)
Bioinformatics, Command line, Workflows, Bash, Computational biology
WORKSHOP: Online data analysis for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘Online data analysis for biologists’. This workshop took place on 9 September 2021.
Workshop description
Galaxy is an online platform for biological research that allows people to use computational data...
Keywords: Bioinformatics, Analysis, Workflows, Galaxy Australia
WORKSHOP: Online data analysis for biologists
https://zenodo.org/record/5775277
https://staging.dresa.org.au/materials/workshop-online-data-analysis-for-biologists
This record includes training materials associated with the Australian BioCommons workshop ‘Online data analysis for biologists’. This workshop took place on 9 September 2021.
Workshop description
Galaxy is an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience.
It is an open source, web-based platform for accessible, reproducible, and transparent computational biomedical research. It also captures run information so that workflows can be saved, repeated and shared efficiently via the web.
This interactive beginners workshop will provide an introduction to the Galaxy interface, histories and available tools. The material covered in this workshop is freely available through the Galaxy Training Network.
The workshop will be held via Zoom and involves a combination of presentations by the lead trainer and smaller breakout groups supported by experienced facilitators.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop
Online_data_analysis_for_biologists_extraslides (PPTX and PDF): Slides used to introduce the data set and emphasise the importance of workflows. These slides were developed by Ms Grace Hall.
Materials shared elsewhere:
The tutorial used in this workshop is available via the Galaxy Training Network.
Anne Fouilloux, Nadia Goué, Christopher Barnett, Michele Maroni, Olha Nahorna, Dave Clements, Saskia Hiltemann, 2021 Galaxy 101 for everyone (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/introduction/tutorials/galaxy-intro-101-everyone/tutorial.html Online; accessed Fri Dec 10 2021
Melissa Burke (melissa@biocommons.org.au)
Hall, Grace (orcid: 0000-0002-5105-8347)
Perreau, Vicky (orcid: 0000-0002-0773-7246)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Bioinformatics, Analysis, Workflows, Galaxy Australia
WEBINAR: KBase - A knowledge base for systems biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy Systems...
Keywords: Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: KBase - A knowledge base for systems biology
https://zenodo.org/record/5717580
https://staging.dresa.org.au/materials/webinar-kbase-a-knowledge-base-for-systems-biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy Systems Biology Knowledgebase (KBase) is a free, open source, software and data science platform designed to meet the grand challenge of systems biology: predicting and designing biological function.
This webinar will provide an overview of the KBase mission and user community, as well as a tour of the online platform and basic functionality. You’ll learn how KBase can support your research: Upload data, run analysis tools (Apps), share your analysis with collaborators, and publish your data and reproducible workflows. We’ll highlight a brand new feature that enables users to link environment and measurement data to sequencing data. You’ll also find out how KBase supports findable, accessible, interoperable, and reusable (FAIR) research by providing open, reproducible, shareable bioinformatics workflows.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Q&A for Australian BioCommons KBase Webinar [PDF]: Document containing answers to questions asked during the webinar and links to additional resources
Introduction to KBase: Australian BioCommons Webinar [PDF]: Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/tJ94i9gOJfU
The slides are also available as Google slides:
https://tinyurl.com/KBase-webinar-slides
Melissa Burke (melissa@biocommons.org.au)
Dow, Ellen (orcid: 0000-0002-2079-0260)
Wood-Charlson, Elisha (orcid: 0000-0001-9557-7715)
Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: Conservation genomics in the age of extinction
This record includes training materials associated with the Australian BioCommons webinar ‘Conservation genomics in the age of extinction’. This webinar took place on 8 March 2022.
Event description
Biodiversity is crashing and millions of plant and animal species are at the edge of...
Keywords: Conservation genomics, Genomics, Bioinformatics, Sequencing, Threatened Species Initiative, Galaxy Australia
WEBINAR: Conservation genomics in the age of extinction
https://zenodo.org/record/6350785
https://staging.dresa.org.au/materials/webinar-conservation-genomics-in-the-age-of-extinction
This record includes training materials associated with the Australian BioCommons webinar ‘Conservation genomics in the age of extinction’. This webinar took place on 8 March 2022.
Event description
Biodiversity is crashing and millions of plant and animal species are at the edge of extinction. Understanding the genetic diversity of these species is an important tool for conservation biology but obtaining high quality genomes for threatened species is not always straightforward.
In this webinar Dr Carolyn Hogg speaks about the work she has been doing with the Threatened Species Initiative to build genomic resources to understand and protect Australia’s threatened species. Using examples such as the Kroombit Tinker Frog and the Greater Bilby, Carolyn describes some of the complexities and challenges of generating genomes from short reads and HiFi reads for critically endangered species. She outlines the technologies and resources being used and how these are bridging the gap between genomicists, bioinformaticians and conservation experts to help save Australian species.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/Bl7CaiGQ91s
Melissa Burke (melissa@biocommons.org.au)
Hogg, Carolyn (orcid: 0000-0002-6328-398X)
Conservation genomics, Genomics, Bioinformatics, Sequencing, Threatened Species Initiative, Galaxy Australia
WEBINAR: Making sense of phosphoproteomics data with Phosphomatics
This record includes training materials associated with the Australian BioCommons webinar ‘Making sense of phosphoproteomics data with Phosphomatics’. This webinar took place on 2 June 2021.
Mass spectrometry-based phosphoproteomics is one of the most powerful tools available for investigating...
Keywords: Phosphoproteomics, Proteomics, Mass spectrometry
WEBINAR: Making sense of phosphoproteomics data with Phosphomatics
https://zenodo.org/record/5126083
https://staging.dresa.org.au/materials/webinar-making-sense-of-phosphoproteomics-data-with-phosphomatics
This record includes training materials associated with the Australian BioCommons webinar ‘Making sense of phosphoproteomics data with Phosphomatics’. This webinar took place on 2 June 2021.
Mass spectrometry-based phosphoproteomics is one of the most powerful tools available for investigating the detailed molecular events that occur in response to cellular stimuli. Experiments can routinely detect and quantify thousands of phosphorylated peptides, and interpreting this data, and extracting biological meaning, remains challenging.
This webinar provides an overview of the phosphoproteomics data analysis website, Phosphomatics, that incorporates a suite of tools and resources for statistical and functional analysis that aim to simplify the process of extracting meaningful insights from experimental results.
Phosphomatics can natively import search and quantitation results from major search engines including MaxQuant and Proteome Discoverer and employs intuitive ‘wizards’ to guide users through data preprocessing routines such as filtering, normalization and transformation. A graphical platform of interactive univariate and multivariate analysis features is provided that allow subgroups of the uploaded data containing phosphosites of statistical interest to be created and interrogated through further functional analysis. A range of databases have been integrated that, for example, provide ligand and inhibitor information for key proteins or highlight key modification sites known to be involved in functional state regulation. At each step, published literature is natively incorporated along with a ‘bibliography builder’ that allows references of interest to be assembled and exported in various formats. Taken together, these expanded features aim to provide a ‘one-stop-shop’ for phosphoproteomics data analysis.
The webinar is followed by a short Q&A session.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Phosphomatics -slides (PDF and PPTX): Slides used in the presentation
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/_WpeL5t2DSI
Melissa Burke (melissa@biocommons.org.au)
Leeming, Michael (orcid: 0000-0001-8981-0701)
Phosphoproteomics, Proteomics, Mass spectrometry
WORKSHOP: Variant calling in humans, animals and plants with Galaxy
This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.
Variant calling in polyploid organisms, including humans, plants and animals, can help determine single...
Keywords: Variant calling, Genetic Variation Analysis, SNP annotation
WORKSHOP: Variant calling in humans, animals and plants with Galaxy
https://zenodo.org/record/5076668
https://staging.dresa.org.au/materials/workshop-variant-calling-in-humans-animals-and-plants-with-galaxy
This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.
Variant calling in polyploid organisms, including humans, plants and animals, can help determine single or multi-variant contributors to a phenotype. Further, sexual reproduction (as compared to asexual) combines variants in a novel manner; this can be used to determine previously unknown variant - phenotype combinations but also to track lineage and lineage associated traits (GWAS studies), that all rely on highly accurate variant calling. The ability to confidently call variants in polyploid organisms is highly dependent on the balance between the frequency of variant observations against the background of non-variant observations, and even further compounded when one considers multi-variant positions within the genome. These are some of the challenges that will be explored in the workshop.
In this online workshop we focused on the tools and workflows available for variant calling in polyploid organisms in Galaxy Australia. The workshop provided opportunities for hands-on experience using Freebayes for variant calling and SnpEff and GEMINI for variant annotation. The workshop made use of data from a case study on diagnosing a genetic disease however the tools and workflows are equally applicable to other polyploid organisms and biological questions.
Access to all of the tools covered in this workshop was via Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop
Variant calling - humans, animals, plants - slides (PPTX and PDF): slides used in the workshop
Materials shared elsewhere:
The tutorial used in this workshop is available via the Galaxy Training Network.
Wolfgang Maier, Bérénice Batut, Torsten Houwaart, Anika Erxleben, Björn Grüning, 2021 Exome sequencing data analysis for diagnosing a genetic disease (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/variant-analysis/tutorials/exome-seq/tutorial.html Online; accessed 25 May 2021
Melissa Burke (melissa@biocommons.org.au)
Price, Gareth (orcid: 0000-0003-2439-8650)
Variant calling, Genetic Variation Analysis, SNP annotation
WEBINAR: Getting started with deep learning
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021.
Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep...
Keywords: Deep learning, Neural networks, Machine learning
WEBINAR: Getting started with deep learning
https://zenodo.org/record/5121004
https://staging.dresa.org.au/materials/webinar-getting-started-with-deep-learning
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021.
Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep learning ‘in a nutshell’ and provides tips on which concepts and skills you will need to know to build a deep learning application. The presentation also provides pointers to various resources you can use to get started in deep learning.
The webinar is followed by a short Q&A session.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Getting Started with Deep Learning - Slides (PDF): Slides used in the presentation
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/I1TmpnZUuiQ
Melissa Burke (melissa@biocommons.org.au)
Tang, Titus (orcid: 0000-0001-7496-1152)
Deep learning, Neural networks, Machine learning
WEBINAR: Establishing Gen3 to enable better human genome data sharing in Australia
This record includes training materials associated with the Australian BioCommons webinar ‘Establishing Gen3 to enable better human genome data sharing in Australia’. This webinar took place on 16 February 2022.
Event description
Australian human genome initiatives are generating vast amounts...
Keywords: Bioinformatics, Genomics, Human genomics, Digital infrastructure, Gen3, Data sharing, Data management
WEBINAR: Establishing Gen3 to enable better human genome data sharing in Australia
https://zenodo.org/record/6233075
https://staging.dresa.org.au/materials/webinar-establishing-gen3-to-enable-better-human-genome-data-sharing-in-australia
This record includes training materials associated with the Australian BioCommons webinar ‘Establishing Gen3 to enable better human genome data sharing in Australia’. This webinar took place on 16 February 2022.
Event description
Australian human genome initiatives are generating vast amounts of human genome data. There is a desire and need to share data with collaborators but researchers face significant infrastructural, technical and administrative barriers in achieving this. To efficiently share and distribute their genome data they need scalable services and infrastructure that: is easily administered; allows for the efficient data management; enables sharing and interoperability; and is aligned with global standards for human genome data sharing.
Australian BioCommons has brought together a team from Zero Childhood Cancer (Zero), the University of Melbourne Centre for Cancer Research (UMCCR) and Australian Access Federation to explore the use of Gen3 technology. Establishing systems for easier management and sharing of their human genome data holdings is no simple task, and the group wants to ensure that other Australian providers and Institutions can benefit from their experience and easily deploy the same solution in the future.
Gen3 is an open source software suite that makes use of private and public clouds to tackle the challenges of data management, interoperability, data sharing and analysis. It has been used in several very large NIH-funded projects that collectively house and describe data derived from hundreds of thousands of human samples (e.g. NCI Genomic Data Commons, BioData Catalyst, BloodPAC, BrainCommons, Kids First Data Commons).
In this webinar you’ll hear from UMCCR and Zero about their experiences and progress towards establishing Gen3 instances to better enable better human genome data sharing in Australia. They will outline the challenges and opportunities that have arisen through this Australian BioCommons project and demonstrate the capabilities of Gen3 for human genome research.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Gen3_Webinar_Slides (PDF): Slides presented during the webinar
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/1F6B03Byigk
Melissa Burke (melissa@biocommons.org.au)
Pope, Bernie (orcid: 0000-0002-4840-1095)
Hofmann, Oliver (orcid: 0000-0002-7738-1513)
Wong-Erasmus, Marie (orcid: 0000-0003-0066-6606)
Taouk, Kamile (orcid: 0000-0001-8389-510X)
Bioinformatics, Genomics, Human genomics, Digital infrastructure, Gen3, Data sharing, Data management
WEBINAR: Where to go when your bioinformatics outgrows your compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...
Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Where to go when your bioinformatics outgrows your compute
https://zenodo.org/record/5240578
https://staging.dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey. We also describe bioinformatics and computing support services available to Australian researchers.
This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar
Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar.
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/hNTbngSc-W0
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Sadsad, Rosemarie (orcid: 0000-0003-2488-953X)
Coddington, Paul (orcid: 0000-0003-1336-9686)
Gladman, Simon (orcid: 0000-0002-6100-4385)
Edberg, Roger
Shaikh, Javed
Cytowski, Maciej (orcid: 0000-0002-0007-0979)
Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation
This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.
Multi-gene datasets used in phylogenetic...
Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation
https://zenodo.org/record/5104998
https://staging.dresa.org.au/materials/webinar-conflict-in-multi-gene-datasets-why-it-happens-and-what-to-do-about-it-deep-coalescence-paralogy-and-reticulation
This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.
Multi-gene datasets used in phylogenetic analyses, such as those produced by the sequence capture or target enrichment used in the Genomics for Australian Plants: Australian Angiosperm Tree of Life project, often show discordance between individual gene trees and between gene and species trees. This webinar explores three different forms of discordance: deep coalescence, paralogy, and reticulation. In each case, it considers underlying biological processes, how discordance presents in the data, and what bioinformatic or phylogenetic approaches and tools are available to address these challenges. It covers Yang and Smith paralogy resolution and general information on options for phylogenetic analysis.
This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focused on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schmidt-Lebuhn - paralogy lineage sorting reticulation - slides (PDF): Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/1bw81q898z8
Melissa Burke (melissa@biocommons.org.au)
Schmidt-Lebuhn, Alexander (orcid: 0000-0002-7402-8941)
Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor...
Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
https://zenodo.org/record/5781776
https://staging.dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.
DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations.
This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.
This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings
Materials shared elsewhere:
This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison.
https://monashdatafluency.github.io/r-bioc-2/
Melissa Burke (melissa@biocommons.org.au)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Wong, Nick (orcid: 0000-0003-4393-7541)
Reames, Benjamin
R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
WEBINAR: Launching the new Apollo Service: collaborative genome annotation for Australian researchers
This record includes training materials associated with the Australian BioCommons webinar ‘Launching the new Apollo Service: collaborative genome annotation for Australian researchers’. This webinar/workshop took place on 29 September 2021.
Event description
Genome annotation is crucial to...
Keywords: Genome Annotation, Genomics, Genome curation, Bioinformatics, Apollo software
WEBINAR: Launching the new Apollo Service: collaborative genome annotation for Australian researchers
https://zenodo.org/record/5775233
https://staging.dresa.org.au/materials/webinar-launching-the-new-apollo-service-collaborative-genome-annotation-for-australian-researchers
This record includes training materials associated with the Australian BioCommons webinar ‘Launching the new Apollo Service: collaborative genome annotation for Australian researchers’. This webinar/workshop took place on 29 September 2021.
Event description
Genome annotation is crucial to defining the function of genomic sequences. Apollo is a popular tool for facilitating real-time collaborative curation and genome annotation editing. The technical obstacles faced by Australian researchers wanting to access and maintain this software have now been solved.
The new Australian Apollo Service can host your genome assembly and supporting evidence files, taking care of all the system administration so you and your team can focus on the annotation curation itself. The Australian BioCommons and partners at QCIF and Pawsey are now offering the Apollo Service free to use for Australian-based research groups and research consortia.
As part of this launch, you’ll hear what’s possible from some of the early adopters who helped guide the development of the service. These Australian researchers will highlight the benefits that Apollo is bringing to their genome annotation and curation workflows.
Join us to find out how you can get access to the Australian Apollo Service.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Degnan Lab - Apollo Launch Webinar (PDF): Slides presented by Professors Sandie and Bernie Degnan
Nelson - Apollo Launch Webinar (PDF): Slides presented by Dr Tiffanie Nelson
Voelker - Apollo Launch Webinar (PDF): Slides presented by Julia Voelker
Rane - Apollo Launch Webinar (PDF): Slides presented by Dr Rahul Rane.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/o8jhRra-x4Y
Melissa Burke (melissa@biocommons.org.au)
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Rane, Rahul (orcid: 0000-0003-4616-6244)
Degnan, Sandie (orcid: 0000-0001-8003-0426)
Degnan, Bernie (orcid: 0000-0001-7573-8518)
Voelker, Julia (orcid: 0000-0002-7615-0553)
Genome Annotation, Genomics, Genome curation, Bioinformatics, Apollo software
WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset
This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.
Hybridisation plays an important role in evolution, leading to the exchange of genes...
Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset
https://zenodo.org/record/5105013
https://staging.dresa.org.au/materials/webinar-detection-of-and-phasing-of-hybrid-accessions-in-a-target-capture-dataset
This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.
Hybridisation plays an important role in evolution, leading to the exchange of genes between species and, in some cases, generate new lineages. The use of molecular methods has revealed the frequency and importance of reticulation events is higher than previously thought and this insight continues with the ongoing development of phylogenomic methods that allow novel insights into the role and extent of hybridisation. Hybrids notoriously provide challenges for the reconstruction of evolutionary relationships, as they contain conflicting genetic information from their divergent parental lineages. However, this also provides the opportunity to gain insights into the origin of hybrids (including autopolyploids).
This webinar explores some of the challenges and opportunities that occur when hybrids are included in a target capture sequence dataset. In particular, it describes the impact of hybrid accessions on sequence assembly and phylogenetic analysis and further explores how the information of the conflicting phylogenetic signal can be used to detect and resolve hybrid accessions. The webinar showcases a novel bioinformatic workflow, HybPhaser, that can be used to detect and phase hybrids in target capture datasets and will provide the theoretical background and concepts behind the workflow.
This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focuses on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Nauheimer_hybphaser_slides (PDF): Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/japXwTAhA5U
Melissa Burke (melissa@biocommons.org.au)
Nauheimer, Lars (orcid: 0000-0002-2847-0966)
Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WORKSHOP: Refining genome annotations with Apollo
This record includes training materials associated with the Australian BioCommons workshop ‘Refining genome annotations with Apollo’. This workshop took place on 17 November 2021.
Workshop description
Genome annotation is crucial to defining the function of genomic sequences. This process...
Keywords: Apollo Software, Bioinformatics, Analysis, Workflows, Genomics, Genome annotation
WORKSHOP: Refining genome annotations with Apollo
https://zenodo.org/record/5781812
https://staging.dresa.org.au/materials/workshop-refining-genome-annotations-with-apollo
This record includes training materials associated with the Australian BioCommons workshop ‘Refining genome annotations with Apollo’. This workshop took place on 17 November 2021.
Workshop description
Genome annotation is crucial to defining the function of genomic sequences. This process typically involves a round of automated annotation followed by manual curation. Manual curation allows you to visualise your annotations so you can understand what your organism looks like, and then to manually refine these annotations along with any additional data you might have. This process is typically performed collaboratively as part of a team effort.
Apollo is a popular tool for facilitating real-time collaborative, manual curation and genome annotation editing. In this workshop we will learn how to use Apollo to refine genome annotations using example data from an E. coli strain. We’ll focus on the basics like getting data into Apollo, viewing evidence tracks, editing and adding structural and functional annotation, visualising the results and collaborating on genome annotations.
This workshop made use of a training instance of the new Australian Apollo Service. This service enables Australian-based research groups and consortia to access Apollo and host genome assembly and supporting evidence files for free. This service has been made possible by The Australian BioCommons and partners at QCIF and Pawsey. To learn more about the Australian Apollo Service you can watch the Australian Apollo Launch Webinar.
This workshop was presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) .
The Australian Apollo Service is operated by QCIF and underpinned by computational resources provided by the Pawsey Supercomputing Research Centre and receives NCRIS funding through Bioplatforms Australia and the Australian Research Data Commons as well as Queensland Government RICF funding.
The training materials presented in this workshop were developed by Anthony Bretaudeau, Helena Rasche, Nathan Dunn, Mateo Boudet for the Galaxy Training Network. Helena and Anthony are part of the Gallantries project which is supported by Erasmus Programme of the European Union.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
2021 Apollo Training Intro (PPTX and PDF): Slides used to introduce the Australian Apollo Service
Augustus.gff3 (gff3): E.coli derived data file used in the tutorial. Data was obtained from the Galaxy Training Network and pre-processed using Galaxy Australia.
Blastp_vs_swissprot.gff3: E.coli derived data file used in the tutorial. Data was obtained from the Galaxy Training Network and pre-processed using Galaxy Australia.
Materials shared elsewhere:
This workshop is based on the tutorial ‘Refining genome annotations with Apollo’ which was developed for the Galaxy Training Network.
Anthony Bretaudeau, Helena Rasche, Nathan Dunn, Mateo Boudet, Erasmus Programme, 2021 Refining Genome Annotations with Apollo (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/genome-annotation/tutorials/apollo/tutorial.html Online; accessed Wed Dec 15 2021
See also:
Batut et al., 2018 Community-Driven Data Analysis Training for Biology Cell Systems 10.1016/j.cels.2018.05.012
Melissa Burke (melissa@biocommons.org.au)
Bretaudeau, Anthony (orcid: 0000-0003-0914-2470)
Rasche, Helena (orcid: 0000-0001-9760-8992)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Thang, Mike
Lee, Justin
Apollo Software, Bioinformatics, Analysis, Workflows, Genomics, Genome annotation
WEBINAR: Getting started with R
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with R’. This webinar took place on 16 August 2021.
Data analysis skills are now central to most biological experiments. While Excel can cover some of your data analysis needs, it is not...
Keywords: R statistical software, R studio, Tidyverse, Bioinformatics, Data analysis
WEBINAR: Getting started with R
https://zenodo.org/record/5214277
https://staging.dresa.org.au/materials/webinar-getting-started-with-r
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with R’. This webinar took place on 16 August 2021.
Data analysis skills are now central to most biological experiments. While Excel can cover some of your data analysis needs, it is not always the best choice, particularly for large and complex datasets.
R is an open-source software and programming language that enables data exploration, statistical analysis visualisation and more. While it is the tool of choice for data analysis, getting started can be a little daunting for those without a background in statistics.
In this webinar Saskia Freytag, an R user with over a decade of experience and member of the Bioconductor Community Advisory Board, will walk you through their hints and tips for getting started with R and data analysis. She’ll cover topics like R Studio and why you need it, where to get help, basic data manipulation, visualisations and extending R with libraries. The webinar will be followed by a short Q&A session
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Getting started with R - slides (PDF): Slides used in the presentation
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/JS7yZw7bnX8
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
R statistical software, R studio, Tidyverse, Bioinformatics, Data analysis
WEBINAR: Protection of genomic data and the Australian Privacy Act: when is genomic data 'personal information'?
This record includes training materials associated with the Australian BioCommons webinar ‘Protection of genomic data and the Australian Privacy Act: when is genomic data ‘personal information’?’. This webinar took place on 6 April 2022.
Event description
It is easy to assume that genomic data...
Keywords: Bioinformatics, Genomics, Genetic data, Personal information, Health information, Privacy
WEBINAR: Protection of genomic data and the Australian Privacy Act: when is genomic data 'personal information'?
https://zenodo.org/record/6423621
https://staging.dresa.org.au/materials/webinar-protection-of-genomic-data-and-the-australian-privacy-act-when-is-genomic-data-personal-information
This record includes training materials associated with the Australian BioCommons webinar ‘Protection of genomic data and the Australian Privacy Act: when is genomic data ‘personal information’?’. This webinar took place on 6 April 2022.
Event description
It is easy to assume that genomic data will be captured by legal definitions of ‘health information’ and ‘genetic information’, but the legal meaning of ‘genetic information’ need not align with scientific categories.
There are many different types of genomic data, with varied characteristics, uses and applications. Clarifying when genomic data is covered by the Privacy Act 1988 (Cth) is an ongoing evaluative exercise but is important for at least 3 reasons:
those subject to the Privacy Act need to be able to confidently navigate their responsibilities
understanding current controls is a prerequisite for meaningful external critique (and this is particularly important at a time when the Privacy Act is under review), and
while legislation that applies to state public sector agencies is generally distinct from the Privacy Act there are similarities that extend the relevance of the question when is genomic data ‘personal information’ under the Privacy Act?
In this presentation, Mark will explore the relationship between the legal concept of genetic information and the concept of genomic data relevant to health and medical research, reflect on the characteristics of each, and the possibility
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Taylor_Slides (PDF): A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/Iaei-9Gu-AI
Melissa Burke (melissa@biocommons.org.au)
Taylor, Mark (orcid: 0000-0003-2009-6284)
Bioinformatics, Genomics, Genetic data, Personal information, Health information, Privacy
WORKSHOP: Introduction to Metabarcoding using QIIME2
This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.
Event description
Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy...
Keywords: Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
WORKSHOP: Introduction to Metabarcoding using QIIME2
https://zenodo.org/record/6350808
https://staging.dresa.org.au/materials/workshop-introduction-to-metabarcoding-using-qiime2
This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.
Event description
Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy with high-throughput DNA sequencing, it offers the potential to observe a larger diversity in the taxa within a single sample, rapidly expanding the scope of microbial analysis and generating high-quality biodiversity data.
This workshop will introduce the topic of metabarcoding and how you can use Qiime2 to analyse 16S data and gain simultaneous identification of all taxa within a sample. Qiime2 is a popular tool used to perform powerful microbiome analysis that can transform your raw data into publication quality visuals and statistics. In this workshop, using example 16S data from the shallow-water marine anemone E. diaphana, you will learn how to use this pipeline to run essential steps in microbial analysis including generating taxonomic assignments and phylogenic trees, and performing both alpha- and beta- diversity analysis.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Materials shared elsewhere:
This workshop follows the tutorial ‘Introduction to metabarcoding with QIIME2’ which has been made publicly available by Melbourne Bioinformatics.
https://www.melbournebioinformatics.org.au/tutorials/tutorials/qiime2/qiime2/
Melissa Burke (melissa@biocommons.org.au)
Dungan, Ashley (orcid: 0000-0003-0958-2177)
Philip, Gayle (orcid: 0000-0002-2671-5093)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Ismail, Rania
Geissler, Laura
Tandon, Kshitij (orcid: 0000-0003-3022-0808)
Makunin, Igor
Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
WEBINAR: High performance bioinformatics: submitting your best NCMAS application
This record includes training materials associated with the Australian BioCommons webinar ‘High performance bioinformatics: submitting your best NCMAS application’. This webinar took place on 20 August 2021.
Bioinformaticians are increasingly turning to specialised compute infrastructure and...
Keywords: Computational Biology, Bioinformatics, High Performance Computing, HPC, NCMAS
WEBINAR: High performance bioinformatics: submitting your best NCMAS application
https://zenodo.org/record/5239883
https://staging.dresa.org.au/materials/webinar-high-performance-bioinformatics-submitting-your-best-ncmas-application
This record includes training materials associated with the Australian BioCommons webinar ‘High performance bioinformatics: submitting your best NCMAS application’. This webinar took place on 20 August 2021.
Bioinformaticians are increasingly turning to specialised compute infrastructure and efficient, scalable workflows as their research becomes more data intensive. Australian researchers that require extensive compute resources to process large datasets can apply for access to national high performance computing facilities (e.g. Pawsey and NCI) to power their research through the National Computational Merit Allocation Scheme (NCMAS). NCMAS is a competitive, merit-based scheme and requires applicants to carefully consider how the compute infrastructure and workflows will be applied.
This webinar provides life science researchers with insights into what makes a strong NCMAS application, with a focus on the technical assessment, and how to design and present effective and efficient bioinformatic workflows for the various national compute facilities. It will be followed by a short Q&A session.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
High performance bioinformatics: submitting your best NCMAS application - slides (PDF and PPTX): Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/HeFGjguwS0Y
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Computational Biology, Bioinformatics, High Performance Computing, HPC, NCMAS